Introduct	

GPU implementation of multigrid solver of Stokes equation with strongly variable viscosity

Liang ZHENG^{1,4} Taras Gerya² Matthew Knepley³ David A. Yuen⁴ Huai ZHANG¹ Yaolin SHI¹

¹Key laboratory of Computational Geodynamics, Chinese Academy of Sciences, China ²Institute of Geophysics, ETH-Zurich, Switzerland ³Computational Institute, University of Chicago, Chicago, Illinois, U.S. ⁴Minnesota Supercomputing Institute, University of Minnesota, Minnesota, U.S.

Berkeley, Jan 2011

Intr	od	uct	ion	

Strategies for solving Stokes Equations

Implementation of the GPU Solver

Conclusion and future

Figure: I am Liang (Larry) ZHENG!

Introd	uction

Strategies for solving Stokes Equations

Implementation of the GPU Solver

Conclusion and future

Outline

- Stokes flow in Coodyn
- Stokes flow in Geodynamics
- Stokes equations with strongly variable-viscosity
- 2 Strategies for solving Stokes Equations
 - Methods used on CPU
 - Strategies on GPU
- Implementation of the GPU Solver
 - 2D version
 - 3D version

Introduction	Strategies for solving Stokes Equations
000	

Conclusion and future

Stokes flow in Geodynamics

Why do geoscientists study the Stokes flow problem?

The solid earth deforms slowly and behaves as viscous fluid over geological time so geoscientists can study the earth using fluid dynamic methods with the basic principles of conservation.

Introduction	Strategies for solving Stokes Equations
•00	

Conclusion and future

Stokes flow in Geodynamics

- The solid earth deforms slowly and behaves as viscous fluid over geological time so geoscientists can study the earth using fluid dynamic methods with the basic principles of conservation.
- Stokes flow

Introduction	Strategies for solving Stokes Equations
•00	

Conclusion and future

Stokes flow in Geodynamics

- The solid earth deforms slowly and behaves as viscous fluid over geological time so geoscientists can study the earth using fluid dynamic methods with the basic principles of conservation.
- Stokes flow
 - Stokes flow is also named creeping flow which Reynolds number is close to Zero ...

Introduction	Strategies for solving Stokes Equations
•00	

Conclusion and future

Stokes flow in Geodynamics

- The solid earth deforms slowly and behaves as viscous fluid over geological time so geoscientists can study the earth using fluid dynamic methods with the basic principles of conservation.
- Stokes flow
 - Stokes flow is also named creeping flow which Reynolds number is close to Zero ...
 - Advective Inertial Forces are small compared with viscous forces

Introduction	Strategies for solving Stokes Equations
•••	

Conclusion and future

Stokes flow in Geodynamics

- The solid earth deforms slowly and behaves as viscous fluid over geological time so geoscientists can study the earth using fluid dynamic methods with the basic principles of conservation.
- Stokes flow
 - Stokes flow is also named creeping flow which Reynolds number is close to Zero ...
 - Advective Inertial Forces are small compared with viscous forces
 - Geodynamic Processes: Mantle Convection, Lithospheric Deformation, Lava Flow ...

Introduction ○●○	Strategies for solving Stokes Equations	Implementation of the GPU Solver	Conclusion and future
Stokes flow in Geo	dynamics		
Stokes ec	luations		

Stokes flow in Geo	odynamics	
Stokes ec	quations	

Mass Conservation

$$\frac{\partial u_i}{\partial x_i} = 0 \tag{1}$$

Introduction	Strategies for solving Stokes Equations	Impl
000		

Conclusion and future

(1)

Stokes flow in Geodynamics

Stokes equations

Mass Conservation

$$\frac{\partial u_i}{\partial x_i} = 0$$

Momentum Conservation

$$\frac{\partial \sigma'_{ij}}{\partial \mathbf{x}_j} - \frac{\partial \mathbf{P}}{\partial \mathbf{x}_i} + \rho \mathbf{g}_i = \mathbf{0}$$
(2)

Introduction	Strategies for solving Stokes Equations
000	

Conclusion and future

(1)

Stokes flow in Geodynamics

Stokes equations

Mass Conservation

$$\frac{\partial u_i}{\partial x_i} = 0$$

Momentum Conservation

$$\frac{\partial \sigma'_{ij}}{\partial \mathbf{x}_j} - \frac{\partial \mathbf{P}}{\partial \mathbf{x}_i} + \rho \mathbf{g}_i = \mathbf{0}$$
(2)

this makes it a saddle point system , which is difficult to solve.

Introduction	Strategies for solving Stokes Equations
000	

Conclusion and future

Stokes flow in Geodynamics

Stokes equations

Mass Conservation

$$\frac{\partial u_i}{\partial x_i} = 0$$

(1)

Momentum Conservation

$$\frac{\partial \sigma'_{ij}}{\partial \mathbf{x}_j} - \frac{\partial \mathbf{P}}{\partial \mathbf{x}_i} + \rho \mathbf{g}_i = \mathbf{0}$$
(2)

this makes it a saddle point system , which is difficult to solve.

Viscous Constitutive Relationship

$$\sigma'_{ij} = 2\mu \,\dot{\varepsilon}_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \tag{3}$$

Introduction	Strategies for solving Stokes Equations
000	

Conclusion and future

Stokes equations with strongly variable-viscosity

Strongly Variable-viscosity

Introduction	Strategies for solving Stokes Equations
000	

Conclusion and future

(4)

Stokes equations with strongly variable-viscosity

Strongly Variable-viscosity

Effective viscosity depends on environmental parameters

$$\mu_{ ext{eff}} \propto exp\left(rac{E_a+V_aP}{nRT}
ight)$$

Strongly Variable-viscosity

Effective viscosity depends on environmental parameters

$$\mu_{\rm eff} \propto \exp\left(\frac{E_a + V_a P}{nRT}\right) \tag{4}$$

• These strongly variable viscosity phenomenons are commonplace in geodynamic processes. For example the contrast of viscosity of surface conditions of the earth and upper mantle reaches $\frac{\mu_1}{\mu_0} \sim 10^{10}$ for the huge difference of temperature.

Introduction	Strategies for solving Stokes Equations
000	

Conclusion and future

Stokes equations with strongly variable-viscosity

Strongly Variable-viscosity

Effective viscosity depends on environmental parameters

$$\mu_{\text{eff}} \propto \exp\left(\frac{E_a + V_a P}{nRT}\right) \tag{4}$$

- These strongly variable viscosity phenomenons are commonplace in geodynamic processes. For example the contrast of viscosity of surface conditions of the earth and upper mantle reaches $\frac{\mu_1}{\mu_0} \sim 10^{10}$ for the huge difference of temperature.
- Because coupled with continuum equation Stokes flow problem is hard to solve even with constant viscosity for the saddle-point problems. What's worse is with the strongly variable coefficients the matrix becomes very ill-conditioned and there are not many proven methods for solving it.

Introduction	Strategies for solving Stokes Equations ●○○	Implementation of the GPU Solver	Conclusion and future
Methods used on C	CPU		
Methods	used on CPU		

Introduction	Strategies for solving Stokes Equations ●○○	Implementation of the GPU Solver	Conclusion and future
Methods used on	CPU		
Methods	used on CPU		

A lot of numerical methods have been applied to solve Stokes equations on CPU before the birth of GPU including finite difference, finite volume and finite element method.

Introduction	Strategies for solving Stokes Equations $\bullet \circ \circ$	Implementation of the GPU Solver	Conclusion and future
Methods used on (CPU		
Methods	used on CPU		

- A lot of numerical methods have been applied to solve Stokes equations on CPU before the birth of GPU including finite difference, finite volume and finite element method.
- Coupled with mass equation the Stokes equation becomes the saddle problem that some special iterative methods are there for solving it such as the multigrid method and preconditioned Krylov subspace methods, etc.

Introduction	Strategies for solving Stokes Equations
	000

Conclusion and future

Methods used on CPU

Methods used on CPU

- A lot of numerical methods have been applied to solve Stokes equations on CPU before the birth of GPU including finite difference, finite volume and finite element method.
- Coupled with mass equation the Stokes equation becomes the saddle problem that some special iterative methods are there for solving it such as the multigrid method and preconditioned Krylov subspace methods, etc.
- Multigrid method can speed up the iteration because of the fast convergence of the part of high frequency residuals. Generally multigrid method can be used as a preconditioner of Krylov subspace method which we want to implement later.

Introduction	Strategies for solving Stokes Equations ○●○	Implementation of the GPU Solver	Conclusion and future
Strategies on GPL	J		
Strategies	s on GPU		

- On GPU we used geometric multigrid (GMG) coupled with Red-Black updating method to solve the Stokes equations. The V-cycle GMG is showing as figure 2 which has two part:
 - '-' represents the restriction;
 - '-.' represents the prolongation.

- On GPU we used geometric multigrid (GMG) coupled with Red-Black updating method to solve the Stokes equations. The V-cycle GMG is showing as figure 2 which has two part:
 - '-' represents the restriction;
 - '-.' represents the prolongation.
- Using Red-Black Gauss-Seidel (RBGS) iteration technology for the smoother can avoid the disordered threads when executing the GPU kernels. Figure 3 shows the RBGS technology which can be divided into two parts:
 - Set the boundary condition and ghost points around the nodal points (blue points);
 - Update the red and black points in different kernels (red and blue points).

Introduction	Strategies for solving Stokes Equations ○○●	Implementation of the GPU Solver	Conclusion and future
Strategies on GPU			
GMG and	RBGS		

Figure: V-cycle mulgrid

Figure: Red-Black Gauss-Seidel

Introduction	Strategies for solving Stokes Equations

Conclusion and future

Testing Model

We set a testing model showing as figure 4 to check the solver's ability of dealing with variable viscosity in which the viscosity has a contrast of 10^6 . All the boundary nodes are set with free slip velocity so the force of this model is only gravity. 2D and 3D codes are implemented on GPU to compute the result of the testing model.

Figure: Testing model

Introduction	Strategies for solving Stokes Equations	Implementation of the GPU Solver	Conclusion and future
2D version			
2D versio	n		

- Conservative finite difference methods and staggered stencil are used.
- A disordered smoother's performance is actually between the Jacobi and Gauss-Seidel iteration.
- We compare the codes without multigrid and the 2-level grids under 128*128 resolution.

Figure: Comparison of iterations on CPU and GPU

Introduction	Strategies for solving Stokes Equations	Implementation of the GPU Solver	Conclusion and future
2D version			
2D versio	on		

We also compared the running time on different GPUs including Tesla 1060c (GT200) and GTX 480 (Fermi) architecture with the same cycles (10^5 iterations).

Platform	Single Precision	Double Precision
GPU(Tesla 1060C)	303 sec	619 sec
GPU(GTX 480)	160 sec	245 sec

Table: Comparison o	f different platform	s with different	precision
---------------------	----------------------	------------------	-----------

Introduction	Strategies for solving Stokes Equations
000	000

Conclusion and future

3D version

3D version

Stokes equation in 3D

$$\begin{cases} \frac{\partial \left(2\mu \frac{\partial u_{x}}{\partial x}\right)}{\partial x} + \frac{\partial \left(\mu \left(\frac{\partial u_{x}}{\partial y} + \frac{\partial u_{y}}{\partial x}\right)\right)}{\partial y} + \frac{\partial \left(\mu \left(\frac{\partial u_{x}}{\partial z} + \frac{\partial u_{z}}{\partial x}\right)\right)}{\partial z} - \frac{\partial P}{\partial x} + \rho g_{x} = 0\\ \frac{\partial \left(\mu \left(\frac{\partial u_{x}}{\partial y} + \frac{\partial u_{y}}{\partial x}\right)\right)}{\partial x} + \frac{\partial \left(2\mu \frac{\partial u_{y}}{\partial y}\right)}{\partial y} + \frac{\partial \left(\mu \left(\frac{\partial u_{y}}{\partial z} + \frac{\partial u_{z}}{\partial y}\right)\right)}{\partial z} - \frac{\partial P}{\partial y} + \rho g_{y} = 0\\ \frac{\partial \left(\mu \left(\frac{\partial u_{x}}{\partial z} + \frac{\partial u_{z}}{\partial x}\right)\right)}{\partial x} + \frac{\partial \left(\mu \left(\frac{\partial u_{z}}{\partial y} + \frac{\partial u_{y}}{\partial z}\right)\right)}{\partial y} + \frac{\partial \left(2\mu \frac{\partial u_{x}}{\partial x}\right)}{\partial z} - \frac{\partial P}{\partial z} + \rho g_{z} = 0\\ \frac{\partial u_{x}}{\partial x} + \frac{\partial u_{y}}{\partial y} + \frac{\partial u_{z}}{\partial z} = 0\end{cases}$$

(5)

Introduction	Strategies for solving	Stokes Equation

Conclusion and future

3D version

Discrete scheme with staggered grid

Figure: Discrete scheme with staggered grid

Introduction	Strategies for solving Stokes

Conclusion and future

3D version

Index Macros for staggered grid

It's difficult to use multi-dimensional array in global memory on GPU. Instead we defined a series of macros to translate 3D to 1D array:

Equations

Introduction	Strategies for solving	Stokes Equation

Conclusion and future

3D version

RBGS on GPU

Figure: RBGS on GPU

Introduction	Strategies for solving Stokes Equations

3D version

kernel codes: taking x-direction velocity in red points for example

```
#include "Index h"
   __global__ void rb_vx_r( ... )
                 int i=blockldx.x:
                 int i=blockldx.v:
                 int k=threadIdx.x:
                 i + = 2; i + = 2; k + = 2;
                 //+2 means start from 1 and skip the boundary points
                 if ((i+i+k))%2!=0) return:
                 //decide if it's the red nodes
               double resxcur, kfxcur;
               resxcur=RX(i, j, k) + (pr(i-1, j, k-1)-pr(i-1, j-1, k-1)) / xstp;
                 resxcur = resxcur - (xkf2*(etan(i-1,i,k-1)*(vx(i,i+1,k)-vx(i,i,k))) - etan(i-1,i-1,k-1)*(vx(i,i+1,k)-vx(i,i,k)) - etan(i-1,i-1,k-1)*(vx(i,i+1,k)-vx(i,i,k)) - etan(i-1,i-1,k-1)*(vx(i,i,k)) - etan(i-1,i-1,k-1)*(vx(i,i-1,k)) - etan(i-1,i-1,k-1)*(vx(i,i-1,k-1))*(vx(i,i-1,k-1)*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k-1))*(vx(i,i-1,k
                                                        vx(i,i,k)-vx(i,i-1,k)));
                 resxcur=resxcur - (etaxy(i,j,k-1)*(ykf*(vx(i+1,j,k)-vx(i,j,k))+xykf*(vy(i,j+1,k)-vy(i,j+1,k))
                                                           (i - 1, j + 1, k) = -1, i + 1, i + 
                                                         i = 1, i, k)))):
                 resxcur=resxcur-(etaxz(i-1,j,k)*(zkf*(vx(i,j,k+1)-vx(i,j,k))+xzkf*(vz(i,j+1,k)-vz(i,j,k))
                                                           , j, k)))-etaxz(i-1,j,k-1)*(zkf*(vx(i,j,k)-vx(i,j,k-1))+xzkf*(vz(i,j+1,k-1)-vz)
                                                         i, j, k-1))));
                 kfxcur = -xkf2 * (etan(i-1,j,k-1)+etan(i-1,j-1,k-1)) - ykf * (etaxy(i,j,k-1)+etaxy(i-1,j,k-1)) + (k-1) + (k-
                                                         (-1))-zkf*(etaxz(i-1,i,k)+etaxz(i-1,i,k-1));
               vx(i,j,k)=vx(i,j,k)+resxcur/kfxcur*krelaxs;
```

Introd	uction
000	

Strategies for solving Stokes Equations

Implementation of the GPU Solver

Conclusion and future

3D version

Result of 3D codes

Figure: Velocity-X Unit: m/s

Figure: Velocity-Z Unit: m/s

Figure: Velocity-Y Unit: m/s

Figure: Pressure Unit: Pa

Introduction	Strategies for solving	Stokes	Equa

Conclusion and future

3D version

Comparison of time and iterations on different platforms

Table: Comparison of time and iterations on different platforms

Platform	Model: 32*32*32	Model: 64*64*64
CPU iterations	85	141
GPU iterations	148	106
CPU time	10min	96 min
GPU time	8min	31 min
Speedup	1.2x	3.1x

Introduction	Strategies for sol

Conclusion and future

3D version

Comparison of speedup on different models

Table: Comparison of speedup on different models

Model	CPU Time	GPU time	Speedup
32*32*32	1.2s	0.3s	4.0x
64*64*64	10.5s	2.2s	4.8x
128*128*128	101.6s	21.4s	4.7x
256*256*256	787.3s	202.8s	3.9x

Introd	uction	Strategies for so	olving Stoke	s Equatior

Conclusion and future

Conclusion and future

Introduction	Strategies for solving Stokes Equations

Conclusion and future

Conclusion and future

We have finished the preliminary implementation of GPU based multigrid solver for Stokes equation with strongly variable viscosity. It has increased the performance of the Matlab codes on CPU. But it's only a start and we still need to apply some technologies to improve the codes.

Introduction	Strategies for solving Stokes Equations

Conclusion and future

- We have finished the preliminary implementation of GPU based multigrid solver for Stokes equation with strongly variable viscosity. It has increased the performance of the Matlab codes on CPU. But it's only a start and we still need to apply some technologies to improve the codes.
- 2 Future

Introduction	Strategies for solving Stokes Equations

Conclusion and future

Conclusion and future

We have finished the preliminary implementation of GPU based multigrid solver for Stokes equation with strongly variable viscosity. It has increased the performance of the Matlab codes on CPU. But it's only a start and we still need to apply some technologies to improve the codes.

2 Future

• We are considering deploy it as a preconditioner using DA class in PETSc framework ...

Introduction	Strategies for solving Stokes Equations

Conclusion and future

Conclusion and future

We have finished the preliminary implementation of GPU based multigrid solver for Stokes equation with strongly variable viscosity. It has increased the performance of the Matlab codes on CPU. But it's only a start and we still need to apply some technologies to improve the codes.

2 Future

- We are considering deploy it as a preconditioner using DA class in PETSc framework ...
- Try to run it with MPI on GPU cluster ...

Introduction	Strategies for solving Stokes Equations

Conclusion and future

Conclusion and future

We have finished the preliminary implementation of GPU based multigrid solver for Stokes equation with strongly variable viscosity. It has increased the performance of the Matlab codes on CPU. But it's only a start and we still need to apply some technologies to improve the codes.

2 Future

- We are considering deploy it as a preconditioner using DA class in PETSc framework ...
- Try to run it with MPI on GPU cluster ...
- Use it to model the real large-scale geodynamic problems is our object.

Introd	uction

Strategies for solving Stokes Equations

Implementation of the GPU Solver

Conclusion and future

The End

Thank you! Any Questions?

Figure: I am Liang (Larry) ZHENG!